首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3359篇
  免费   233篇
  国内免费   1篇
  2023年   8篇
  2022年   9篇
  2021年   56篇
  2020年   38篇
  2019年   45篇
  2018年   91篇
  2017年   63篇
  2016年   121篇
  2015年   163篇
  2014年   223篇
  2013年   245篇
  2012年   297篇
  2011年   278篇
  2010年   185篇
  2009年   167篇
  2008年   203篇
  2007年   192篇
  2006年   180篇
  2005年   144篇
  2004年   180篇
  2003年   110篇
  2002年   104篇
  2001年   109篇
  2000年   69篇
  1999年   56篇
  1998年   19篇
  1997年   24篇
  1996年   11篇
  1995年   13篇
  1994年   6篇
  1993年   11篇
  1992年   17篇
  1991年   18篇
  1990年   22篇
  1989年   16篇
  1988年   7篇
  1987年   5篇
  1986年   5篇
  1985年   9篇
  1982年   3篇
  1979年   3篇
  1978年   4篇
  1974年   3篇
  1973年   7篇
  1972年   3篇
  1971年   3篇
  1956年   3篇
  1954年   4篇
  1951年   4篇
  1950年   6篇
排序方式: 共有3593条查询结果,搜索用时 15 毫秒
991.
A study was undertaken to examine the effects of N-linked glycosylation on the structure-function of porcine pepsin. The N-linked motif was incorporated into four sites (two on the N-terminal domain and two on the C-terminal domain), and the recombinant protein expressed using Pichia pastoris. All four N-linked recombinants exhibited similar secondary and tertiary structure to nonglycosylated pepsin, that is, wild type. Similar K(m) values were observed, but catalytic efficiencies were approximately one-third for all mutants compared with the wild type; however, substrate specificity was not altered. Activation of pepsinogen to pepsin occurred between pH 1.0 to 4.0 for wild-type pepsin, whereas the glycosylated recombinants activated over a wider range, pH 1.0 to 6.0. Glycosylation on the C-terminal domain exhibited similar pH activity profiles to nonglycosylated pepsin, and glycosylation on the N-domain resulted in a change in activity profile. Overall, glycosylation on the C-domain led to a more global stabilization of the structure, which translated into enzymatic stability, whereas on the N-domain, an increase in structural stability had little effect on enzymatic stability. Finally, glycosylation on the flexible loop region also appeared to increase the overall structural stability of the protein compared with wild type. It is postulated that the presence of the carbohydrate residues added rigidity to the protein structure by reducing conformational mobility of the protein, thereby increasing the structural stability of the protein.  相似文献   
992.
NK cells play a critical role in the rejection of xenografts. In this study, we report on an investigation of the effect of complement regulatory protein, a decay accelerating factor (DAF: CD55), in particular, on NK cell-mediated cytolysis. Amelioration of human NK cell-mediated pig endothelial cell (PEC) and pig fibroblast cell lyses by various deletion mutants and point substitutions of DAF was tested, and compared with their complement regulatory function. Although wild-type DAF and the delta-short consensus repeat (SCR) 1-DAF showed clear inhibition of both complement-mediated and NK-mediated PEC lyses, delta-SCR2-DAF and delta-SCR3-DAF failed to suppress either process. However, delta-SCR4-DAF showed a clear complement regulatory effect, but had no effect on NK cells. Conversely, the point substitution of DAF (L147 x F148 to SS and KKK(125-127) to TTT) was half down-regulated in complement inhibitory function, but the inhibition of NK-mediated PEC lysis remained unchanged. Other complement regulatory proteins, such as the cell membrane-bound form factor H, fH-PI, and C1-inactivator, C1-INH-PI, and CD59 were also assessed, but no suppressive effect on NK cell-mediated PEC lysis was found. These data suggest, for DAF to function on NK cells, SCR2-4 is required but no relation to its complement regulatory function exists.  相似文献   
993.
1,4-beta-D-Xylan is the major component of plant cell-wall hemicelluloses. beta-D-Xylosidases are involved in the breakdown of xylans into xylose and belong to families 3, 39, 43, 52, and 54 of glycoside hydrolases. Here, we report the first crystal structure of a member of family 39 glycoside hydrolase, i.e. beta-D-xylosidase from Thermoanaerobacterium saccharolyticum strain B6A-RI. This study also represents the first structure of any beta-xylosidase of the above five glycoside hydrolase families. Each monomer of T. saccharolyticum beta-xylosidase comprises three distinct domains; a catalytic domain of the canonical (beta/alpha)(8)-barrel fold, a beta-sandwich domain, and a small alpha-helical domain. We have determined the structure in two forms: D-xylose-bound enzyme and a covalent 2-deoxy-2-fluoro-alpha-D-xylosyl-enzyme intermediate complex, thus providing two snapshots in the reaction pathway. This study provides structural evidence for the proposed double displacement mechanism that involves a covalent intermediate. Furthermore, it reveals possible functional roles for His228 as the auxiliary acid/base and Glu323 as a key residue in substrate recognition.  相似文献   
994.
The effects of retinoic acid (RA) on nitric oxide (NO) production are controversial. Furthermore, it has never been studied whether these effects are mediated by direct modulation of phosphorylation of endothelial nitric oxide synthase (eNOS). Using bovine aortic endothelial cells, we found that all-trans RA (atRA) dose- and time-dependently decreased NO production without alteration in eNOS expression. This decrease was accompanied by reduction in eNOS-Ser(1179) phosphorylation. However, atRA did not alter the phosphorylation of eNOS-Ser(116) or eNOS-Thr(497). Concurrently, atRA also decreased the expressions of vascular endothelial growth factor (VEGF) and its receptor KDR/Flk-1, and Akt phosphorylation. Co-treatment with troglitazone, an activator of VEGF expression, reversed the atRA-induced reductions in eNOS-Ser(1179) phosphorylation and NO production, with concomitant restoration in VEGF expression. Direct treatment with VEGF also reversed these inhibitory effects, suggesting an important role for VEGF. Nonetheless, the RARalpha antagonist Ro 41-5253 did not block all the inhibitory effects of atRA, indicating that these inhibitory effects are not mediated by the RA response element (RARE). Thus, atRA decreases eNOS-Ser(1179) phosphorylation through a mechanism that depends on VEGF-KDR/Flk-1-mediated Akt phosphorylation but is independent of RARE, leading to reduction in NO production.  相似文献   
995.
996.
Lee JH  Ahn SH  Lee EM  Jeong SH  Kim YO  Lee SJ  Kong IS 《FEBS letters》2005,579(11):2507-2513
We have shown previously that the C-terminal region of the extracellular metalloprotease of Vibrio mimicus (VMC) is essential for collagenase activity. Here, we demonstrate that deletion of 100 amino acids, but not 67 amino acids, from the C-terminus of the intact VMC protein (VMC61) abolished the collagenase activity. The intervening 33-amino acid region contains a repeated FAXWXXT motif that is essential for insoluble type I collagen binding; the isolated 33-amino acid peptide bound to insoluble type I collagen, while a peptide containing only the first FAXWXXT motif did not. Compared to the VMC61, the 33-amino acid peptide corresponding to the C-terminus exhibited a similar binding affinity and a lower binding capacity.  相似文献   
997.
Exposure to loud noise can induce temporary or permanent hearing loss, and acoustic trauma is the major cause of hearing impairment in industrial nations. However, the mechanisms underlying the death of hair cells after acoustic trauma remain unclear. In addition to its involvement in cellular stress and apoptosis, the c-Jun N-terminal kinase (JNK), a member of the mitogen-activated protein kinase family, is involved in cell survival, transformation, embryonic morphogenesis, and differentiation. JNK is primarily activated by various environmental stresses including noise, and the phenotypic result appears be to cell death. All-trans retinoic acid (ATRA) is an active metabolite of vitamin A that regulates a wide range of biological processes, including cell proliferation, differentiation, and morphogenesis. We evaluated the role of ATRA in preserving hearing in mice exposed to noise that can induce permanent hearing loss. Mice fed with ATRA before and during 3 consecutive days of noise exposure had a more preserved hearing threshold than mice fed sesame oil or saline. Histological and TUNEL staining of the cochlea showed significantly enhanced preservation of the organ of Corti, including outer hair cells and relatively low apoptotic nuclei, in mice-fed ATRA than in mice-fed sesame oil or saline. Phospho-JNK immunohistochemistry showed that ATRA inhibited the activation of JNK. These results suggest that ATRA has an anti-apoptotic effect on cochleae exposed to noise.  相似文献   
998.
Cd induces oxidative stress and apoptosis in various cells by activating mitogen-activated protein kinases (MAPKs), but the precise signaling components of the MAPK cascade and their role in neuronal apoptosis are still unclear. Here, we report that Cd treatment of SH-SY5Y cells caused apoptosis through sequential phosphorylation of the apoptosis signal regulating kinase 1, MAPK kinase 4, c-Jun N-terminal kinase (JNK), and c-Jun as determined by overexpression of dominant negative (DN) constructs of these genes or using a specific JNK inhibitor SP600125. Both Cd-induced JNK and c-Jun phosphorylation and apoptosis were inhibited dramatically by N-acetyl-L-cysteine, a free radical scavenger. In addition, caspase inhibitors, zDEVD and zVAD, reduced apoptosis but not JNK and c-Jun phosphorylation induced by Cd, while overexpression of DN JNK1 inhibited caspase-3 activity. Taken together, our data suggested that the JNK/c-Jun signaling cascade plays a crucial role in Cd-induced neuronal cell apoptosis and provides a molecular linkage between oxidative stress and neuronal apoptosis.  相似文献   
999.
1000.
Ligation of the main excretory duct of the rat submandibular gland(SMG) produces a pronounced atrophy that is reversed upon ligatureremoval. Based on previous studies by our group and others suggestingthat P2Y2 nucleotide receptors are upregulated in response to tissue damage, we hypothesized that P2Y2 receptoractivity and mRNA levels would increase after duct ligation and return to control levels after ligature removal. Our results support thishypothesis. Intracellular Ca2+ mobilization in response tothe P2Y2 receptor agonist UTP in SMG cells was increasedsignificantly after ligation periods of 1.5 to 7 days, whereas nosignificant response was observed in the contralateral, nonligatedgland. P2Y2 receptor mRNA, as measured bysemiquantitative RT-PCR, increased about 15-fold after 3 days ofligation. These increases reverted to control levels by 14 days afterligature removal. In situ hybridization revealed that the changes inP2Y2 receptor mRNA abundance occurred mostly in acinarcells, which also were more adversely affected by ligation, includingan increase in the appearance of apoptotic bodies. These findingssupport the idea that P2Y2 receptor upregulation may be animportant component of the response to injury in SMG and that recoveryof normal physiological function may signal a decreased requirement forP2Y2 receptors.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号